NCERT Solutions for Class 8th: Ch 1 Rational Numbers Maths

NCERT Solutions for Class 8th: Ch 1 Rational Numbers Maths

Page No: 14

Exercise 1.1

1. Using appropriate properties find.
(i) -2/3 × 3/5 + 5/2 - 3/5 × 1/6   (ii) 2/5 × (-3/7) - 1/6 × 3/2 + 1/14 × 2/5

Answer

(i) -2/3 × 3/5 + 5/2 - 3/5 × 1/6
= -2/3 × 3/5 - 3/5 × 1/6 + 5/2    (by commutativity)
= 3/5(-2/3 - 1/6) + 5/2
= 3/5{(-4 - 1)/6} + 5/2
= 3/5(-5/6) + 5/2    (by distributivity)
= -15/30 + 5/2
= -1/2 + 5/2
= 4/2 = 2

(ii) 2/5 × (-3/7) - 1/6 × 3/2 + 1/14 × 2/5
= 2/5 × (-3/7) + 1/14 × 2/5 - (1/6 × 3/2)    (by commutativity)
= 2/5(-3/7 + 1/14) - 1/4
= 2/5{(-6 + 1)/14} - 1/4    (by distributivity)
= 2/5(-5/14) - 1/4
= -1/7 - 1/4
= (-4-7)/28
= -11/28

2. Write the additive inverse of each of the following.
(i) 2/8   (ii) -5/9   (iii) -6/-5   (iv) 2/-9   (v) 19/-6

Answer

(i) 2/8
Additive inverse = -2/8
(ii) -5/9
Additive inverse = 5/9
(iii) -6/-5 = 6/5
Additive inverse = -6/5
(iv) 2/-9 = -2/9
Additive inverse = 2/9
(v) 19/-6 = -19/6
Additive inverse = 19/6

3. Verify that : -(-x) = x for.
(i) x = 11/15   (ii) x = -13/17

Answer

(i) x = 11/15
The additive inverse of x = 11/15 is -x = -11/15 as 11/15 + (-11/15) = 0
The same equality 11/15 + (-11/15) = 0 , shows that the additive inverse of -11/15 is 11/15 or
-(-11/15) = 11/15 i.e. -(-x) = x

(ii) x = -13/17
The additive inverse of x = -13/17 is -x = 13/17 as (-13/17) + 13/17 = 0
The same equality 13/17 + (-13/17) = 0 , shows that the additive inverse of 13/17 is -13/17 or
-(13/17) = -13/17 i.e. -(-x) = x

4. Find the multiplicative inverse of the following.
(i) -13    (ii) -13/19    (iii) 1/5    (iv) -5/8 × -3/7    (v) -1 × -2/5    (vi) -1

Answer

The multiplicative inverse of a number is the reciprocal of that number.

(i) -13
Multiplicative inverse = -1/13
(ii) -13/19
Multiplicative inverse = -19/13
(iii) 1/5
Multiplicative inverse = 5
(iv) -5/8 × -3/7 = 15/56
Multiplicative inverse = 56/15
(v) -1 × -2/5 = 2/5
Multiplicative inverse = 5/2
(vi) -1
Multiplicative inverse = -1

5. Name the property under multiplication used in each of the following.
(i) -4/5 × 1 = 1 × -4/5 = -4/5
(ii) -13/17 × -2/7 = -2/7 × -13/17
(iii) -19/29 × 29/-19 = 1

Answer

(i) -4/5 × 1 = 1 × -4/5 = -4/5
Here 1 is the multiplicative identity.
(ii) -13/17 × -2/7 = -2/7 × -13/17
Commutavity
(iii) -19/29 × 29/-19 = 1
Multiplicative inverse

6. Multiply 6/13 by the reciprocal of -7/16.

Answer

Reciprocal of -7/16 = 16/-7
A/q,
6/13 × (Reciprocal of -7/16)
= 6/13 × 16/-7 = 96/-91 = -96/91

7. Tell what property allows you to compute 1/3 × (6 × 4/3) as (1/3 × 6) × 4/3.

Answer

By the property of associativity.
8. Is 8/9 the multiplicative inverse of ? Why or why not?

Answer

If it will be the multiplicative inverse then their product will be 1.
= -7/8
A/q,
8/9 × -7/8 = -7/9 ≠ 1
Hence, 8/9 is not the multiplicative inverse.

9. Is 0.3 the multiplicative inverse of ? Why or why not?

Answer

If it will be the multiplicative inverse then their product will be 1.
= 10/3
also, 0.3 = 3/10
A/q,
3/10 × 10/3 = 1
Hence, 0.3 is the multiplicative inverse.

Page No: 15

10. Write.
(i) The rational number that does not have a reciprocal.
(ii) The rational numbers that are equal to their reciprocals.
(iii) The rational number that is equal to its negative.


Answer

(i) 0 is the rational number that does not have a reciprocal.

(ii) 1 and -1 are the rational numbers that are equal to their reciprocals.

(iii) 0 is the rational number that is equal to its negative.

11. Fill in the blanks.
(i) Zero has ________ reciprocal.
(ii) The numbers ________ and ________ are their own reciprocals
(iii) The reciprocal of – 5 is ________.
(iv) Reciprocal of 1/x, where x ≠ 0 is ________.
(v) The product of two rational numbers is always a _______.
(vi) The reciprocal of a positive rational number is ________.

Answer

(i) Zero has no reciprocal.
(ii) The numbers 1 and -1 are their own reciprocals
(iii) The reciprocal of -5 is -1/5.
(iv) Reciprocal of 1/x, where x ≠ 0 is x.
(v) The product of two rational numbers is always a rational numbers.
(vi) The reciprocal of a positive rational number is positive rational numbers.

Page No: 20

Exercise 1.2

1. Represent these numbers on the number line. (i) 7/4   (ii) -5/6

Answer

(i) 7/4 on the number line.
Divide line between two natural number in 4 parts. Thus, the rational number 7/4 lies at a distance of 7 points from 0 towards positive number line.

(ii) -5/6 on the number line.
Divide line between two natural number in 6 parts. Thus, the rational number -5/6 lies at a distance of 5 points from 0 towards negative number line.
 

2. Represent -2/11, -5/11, -9/11 on the number line.

Answer

-2/11, -5/11, -9/11 on the number line.
Divide line between two natural number in 11 parts. Thus, the rational number -2/11, -5/11, -9/11 lie at a distance of 2, 5, 9 points from 0 towards negative number line respectively.


3. Write five rational numbers which are smaller than 2.

Answer

2 can be written as 10/5.
Thus, 5 natural numbers smaller than 2 are:
9/5, 8/5, 7/5, 6/5 and 5/5

4. Find ten rational numbers between -2/5 and 1/2.

Answer

The numbers -2/5 and 1/2 can be written as -8/20 and 10/20
Thus, ten rational numbers between -2/5 and 1/2 are:
-7/20, -6/20, -5/20, -4/20, -3/20, -2/20, -1/20, 0, 1/20 and 2/20

5. Find five rational numbers between.
(i) 2/3 and 4/5    (ii) -3/2 and 5/3    (iii) 1/4 and 1/2

Answer

(i) Five rational numbers between 2/3 and 4/5
The numbers 2/3 and 4/5 can be written as 30/45 and 36/45
Thus, five rational numbers are:
31/45, 32/45, 33/45, 34/45 and 35/45

(ii) Five rational numbers between -3/2 and 5/3
The numbers -3/2 and 5/3 can be written as -9/6 and 10/6
Thus, five rational numbers are:
-8/6, -5/6, -2/6, 0 and 2/6

(iii) Five rational numbers between 1/4 and 1/2
The numbers 1/4 and 1/2 can be written as 7/28 and 14/28
Thus, five rational numbers are:
8/28, 9/28, 10/28, 11/28 and 12/28

6. Write five rational numbers greater than -2.

Answer

-2 can be written as -16/8.
Five rational numbers greater than -2 are:
-15/8, -14/8, -13/8, -12/8 and -11/8

7. Find ten rational numbers between 3/5 and 3/4.

Answer

The numbers 3/5 and 3/4 can be written as 48/80 and 60/80
Thus, ten rational numbers between 3/5 and 3/4 are:
49/80, 50/80, 51/80, 52/80, 53/80, 54/80, 55/80, 56/80, 57/80 and 58/80.

Independence Day Sale - upto 80% OFF on Study Rankers premium plan

Get Offline Ncert Books, Ebooks and Videos Ask your doubts from our experts Get Ebooks for every chapter Play quiz while you study

Download our app for FREE

Study Rankers Android App Learn more

Study Rankers App Promo