NCERT Solutions for Class 9 Math

NCERT Solutions for Class 9 Math

If you are facing any kind of problem while solving any questions of the NCERT Class 9th Math Textbook then you can find in this page. Here, we have provided NCERT Solutions for Class 9 Math in detail way so that you understand the problem easily and at the same time grasp the concepts behind the question. The NCERT Solutions of Math provided on StudyRankers are prepared by our experts that includes every single step of the solutions which will make your task easy. You can view chapterwise solutions clicking on the name of the chapter provided below.
Chapter 1 - Number System

In this chapter, we will learn about the two parts of real numbers, rational numbers and irrational numbers. We will learn how to find rational numbers between two rational numbers and decimal representation of rational and irrational numbers. In the previous class, we read to represent number on number line and in this class we will see how to represent terminating/non-terminating recurring decimals on the number line. We will learn another way of representing real numbers on real number line is through process of successive magnification. In this method we successively decrease the lengths of the intervals in which given number lies. We will also learn about the presentation of square roots of 2, 3 and other non-rational numbers. At last we will study about rationalisation and laws of exponents. The process of converting an irrational denominator of a number to a rational number by multiply its numerator and denominator by a suitable number is called rationalisation.

Chapter 2 - Polynomials

An algebraic expression, in which the variables involved have only whole number powers, is called a polynomial. Polynomials of degree 1, 2 and 3 are called linear, quadratic and cubic polynomials respectively. Polynomials containing one, two and three non-zero terms are called monomial, binomial and trinomial respectively. In this chapter, we will dealing with the degrees, coefficient, zeroes and terms of a polynomial. We will find zero of polynomial through factor and remainder theorem.

Chapter 3 - Coordinate Geometry

he branch of mathematics in which geometric problems are solved using coordinate systems is known as Coordinate Geometry. In this chapter, we are learning about the coordinate plane, axes, abscissa, ordinates, cartesian system, Quadrants etc. The plane is called the cartesian or coordinate plane and the mutually perpendicular lines are called axes. The horizontal line is called the x-axis and the vertical line is called the y-axis. The x-coordinate of a point is called the abscissa. The y-coordinate of a point is called the ordinate. The axes divide the plan in four quadrants. Two number lines mutually perpendicular to each other are called axes. One of them is horizontal and called as x-axis (as shown by XOX' in the following figure). The other line is perpendicular to XOX'. The vertical line YOY', is called y-axis. Both these lines are in the same plane, called the ‘cartesian plane’ or ‘coordinate plane’ or the ‘XY-plane’.

Chapter 4 - Linear Equations in two Variables

This chapter is about linear equations in two variables of the type ax + by + c = 0. An equation of the form ax + by + c = 0; where a, b and care real numbers, such that a and b are not both zero, is called a linear equation in two variables. The questions of this chapter is about proving a linear equation has infinite number of solutions, drawing graphs of linear equations  and solving some world problems.

Chapter 5 - Introduction to Euclid's Geometry

Euclid was a Greek mathematician, who introduced the method of proving a geometrical result by using logical reasonings on previously proved and known results. This chapter is about the Euclid's axioms and postulates. We will know the relationship between axioms, postulates and theorem. Axioms are the basic facts which are taken for granted without proof. Postulates are the basic facts which are taken for granted specific to geometry, without proof. Theorems are statements which can be proved using definitions and axioms.

Watch age fraud in sports in India

Name

Email *

Message *