## CBSE Class 12 Physics Syllabus 2020-21| Check Latest Exam Pattern

CBSE has released revised Class 12 Physics Syllabus 2020-21 that will be helpful in knowing the important topics that will be coming the examinations. Due to coronavirus pandemic, the board has decided to reduce the syllabus by approx 30 percent. The theory paper will be of 70 marks while 30 marks will be awards to practicals and experimental work. Unit Marks I Electrostatics 16 II Current Electricity III Magnetic Effects of Current and Magnetism 17 IV Electromagnetic Induction and Alternating Currents V Electromagnetic Waves 18 VI Optics VII Dual Nature of Radiation and Matter 12 VIII Atoms and Nuclei IX Electronic Devices 07 Total 70

Unit I: Electrostatics

Chapter–1: Electric Charges and Fields

Electric Charges; Conservation of charge, Coulomb's law-force between two-point charges, forces between multiple charges; superposition principle and continuous charge distribution.

Electric field, electric field due to a point charge, electric field lines, electric dipole, electric field due to a dipole, torque on a dipole in uniform electric field.

Electric flux, statement of Gauss's theorem and its applications to find field due to infinitely long straight wire, uniformly charged infinite plane sheet.

Chapter–2: Electrostatic Potential and Capacitance

Electric potential, potential difference, electric potential due to a point charge, a dipole and system of charges; equipotential surfaces, electrical potential energy of a system of two point charges and of electric dipole in an electrostatic field.

Conductors and insulators, free charges and bound charges inside a conductor.

Dielectrics and electric polarisation, capacitors and capacitance, combination of capacitors in series and in parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, energy stored in a capacitor.

Unit II: Current Electricity

Chapter–3: Current Electricity

Electric current, flow of electric charges in a metallic conductor, drift velocity, mobility and their relation with electric current; Ohm's law, electrical resistance, V-I characteristics (linear and non-linear), electrical energy and power, electrical resistivity and conductivity; temperature dependence of resistance.

Internal resistance of a cell, potential difference and emf of a cell, combination of cells in series and in parallel, Kirchhoff's laws and simple applications, Wheatstone bridge, metre bridge(qualitative ideas only).

Potentiometer - principle and its applications to measure potential difference and for comparing EMF of two cells; measurement of internal resistance of a cell(qualitative
ideas only)

Unit III: Magnetic Effects of Current and Magnetism

Chapter–4: Moving Charges and Magnetism

Concept of magnetic field, Oersted's experiment.

Biot - Savart law and its application to current carrying circular loop.

Ampere's law and its applications to infinitely long straight wire. Straight and toroidal solenoids (only qualitative treatment), force on a moving charge in uniform magnetic and electric fields.

Force on a current-carrying conductor in a uniform magnetic field, force between two parallel current-carrying conductors-definition of ampere, torque experienced by a current loop in uniform magnetic field; moving coil galvanometer-its current sensitivity and conversion to ammeter and voltmeter.

Chapter–5: Magnetism and Matter

Current loop as a magnetic dipole and its magnetic dipole moment, magnetic dipole moment of a revolving electron, bar magnet as an equivalent solenoid, magnetic field lines; earth's magnetic field and magnetic elements.

Unit IV: Electromagnetic Induction and Alternating Currents

Chapter–6: Electromagnetic Induction

Electromagnetic induction; Faraday's laws, induced EMF and current; Lenz's Law, Eddy currents. Self and mutual induction.

Chapter–7: Alternating Current

Alternating currents, peak and RMS value of alternating current/voltage; reactance and impedance; LC oscillations (qualitative treatment only), LCR series circuit, resonance; power in AC circuits, AC generator and transformer.

Unit V: Electromagnetic waves

Chapter–8: Electromagnetic Waves

Electromagnetic waves, their characteristics, their Transverse nature (qualitative ideas only).

Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, X-rays, gamma rays) including elementary facts about their uses.

Unit VI: Optics

Chapter–9: Ray Optics and Optical Instruments

Ray Optics: Refraction of light, total internal reflection and its applications, optical fibres, refraction at spherical surfaces, lenses, thin lens formula, lensmaker's formula, magnification, power of a lens, combination of thin lenses in contact, refraction of light through a prism.

Optical instruments: Microscopes and astronomical telescopes (reflecting and refracting) and their magnifying powers.

Chapter–10: Wave Optics

Wave optics: Wave front and Huygen's principle, reflection and refraction of plane wave at a plane surface using wave fronts. Proof of laws of reflection and refraction using Huygen's principle.

Interference, Young's double slit experiment and expression for fringe width, coherent sources and sustained interference of light, diffraction due to a single slit, width of central maximum.

Unit VII: Dual Nature of Radiation and Matter

Chapter–11: Dual Nature of Radiation and Matter

Dual nature of radiation, Photoelectric effect, Hertz and Lenard's observations; Einstein's photoelectric equation-particle nature of light.

Experimental study of photoelectric effect Matter waves-wave nature of particles, de-Broglie relation

Unit VIII: Atoms and Nuclei

Chapter–12: Atoms

Alpha-particle scattering experiment; Rutherford's model of atom; Bohr model, energy levels, hydrogen spectrum.

Chapter–13: Nuclei

Composition and size of nucleus

Nuclear force

Mass-energy relation, mass defect, nuclear fission, nuclear fusion.

Unit IX: Electronic Devices

Chapter–14: Semiconductor Electronics: Materials, Devices and Simple Circuits

Energy bands in conductors, semiconductors and insulators (qualitative ideas only).

Semiconductor diode - I-V characteristics in forward and reverse bias, diode as a rectifier; Special purpose p-n junction diodes: LED, photodiode, solar cell.

Practicals: 30 Marks

 Two experiments one from each section 8+8 Marks Practical record (experiment and activities) 7 Marks Viva on experiments, and activities 7 Marks Total 30 Marks

Section A

Experiments

1. To determine resistivity of two / three wires by plotting a graph for potential difference versus current.

2. To find resistance of a given wire / standard resistor using metre bridge.
OR
To verify the laws of combination (series) of resistances using a metre bridge.
OR
To verify the laws of combination (parallel) of resistances using a metre bridge.

3. To compare the EMF of two given primary cells using potentiometer.
OR
To determine the internal resistance of given primary cell using potentiometer.

4. To determine resistance of a galvanometer by half-deflection method and to find its figure of merit.

5. To convert the given galvanometer (of known resistance and figure of merit) into a voltmeter of desired range and to verify the same.
OR
To convert the given galvanometer (of known resistance and figure of merit) into an ammeter of desired range and to verify the same.

6. To find the frequency of AC mains with a sonometer.

Activities

1. To measure the resistance and impedance of an inductor with or without iron core.

2. To measure resistance, voltage (AC/DC), current (AC) and check continuity of a given circuit using multimeter.
3. To assemble a household circuit comprising three bulbs, three (on/off) switches, a fuse and a power source.

4. To assemble the components of a given electrical circuit.

5. To study the variation in potential drop with length of a wire for a steady current.

6. To draw the diagram of a given open circuit comprising at least a battery, resistor/rheostat, key, ammeter and voltmeter. Mark the components that are not connected in proper order and correct the circuit and also the circuit diagram.

Section B

Experiments

1. To find the focal length of a convex lens by plotting graphs between u and v or between 1/u and 1/v.

2. To find the focal length of a convex mirror, using a convex lens.
OR
To find the focal length of a concave lens, using a convex lens.

3. To determine angle of minimum deviation for a given prism by plotting a graph between angle of incidence and angle of deviation.

4. To determine refractive index of a glass slab using a travelling microscope.

5. To find refractive index of a liquid by using convex lens and plane mirror.

6. To draw the I-V characteristic curve for a p-n junction diode in forward bias and reverse bias.

Activities

1. To identify a diode, an LED, a resistor and a capacitor from a mixed collection of such items.

2. Use of multimeter to see the unidirectional flow of current in case of a diode and an LED and check whether a given electronic component (e.g., diode) is in working order.

3. To study effect of intensity of light (by varying distance of the source) on an LDR.

4. To observe refraction and lateral deviation of a beam of light incident obliquely on a glass slab.

5. To observe polarization of light using two Polaroids.

6. To observe diffraction of light due to a thin slit.

7. To study the nature and size of the image formed by a (i) convex lens, (ii) concave mirror, on a screen by using a candle and a screen (for different distances of the candle from the lens/mirror).

8. To obtain a lens combination with the specified focal length by using two lenses from the given set of lenses.

Prescribed Books: