R.D. Sharma Solutions Class 10th: Ch 5 Trigonometric Ratios Exercise 5.3

Chapter 5 Trigonometric Ratios R.D. Sharma Solutions for Class 10th Math Exercise 5.3

Exercise 5.3

1. Evaluate the following .
(i) sin 20° / cos70° 

Solution



(ii) cos19°/sin71° 

Solution


(iii) sin21° / cos 69° 

Solution


(iv) tan10° / cot 80°  

Solution


(v) sec 11° / cosec 79°    

Solution


2. Evaluate the following : 

(i) (sin 49° / cos 41°)2  + (cos 41° / sin 49°)2 

Solution


(ii) cos 48° - sin 42°

Solution


(iii) cot 40°/ tan 50° - 1/2 (cos 35°/sin 55°)

Solution



(iv) (sin 27°/cos 63°)2 - (cos 63°/sin 27°)2
Solution


(v) (tan 35°/ cot 55°) + (cot 78° / tan 12°) - 1

Solution

 

(vi) sec 70°/cosec 20° + sin 59°/cos 3°

Solution


(vii) cosec 31° + sec 59°

Solution

 

(viii) (sin72° + cos 18°)(sin 72° - cos 18° )

Solution

We have to find : (sin 72° + cos 18°)( sin 72° - cos 18° )
Since sin(90°- θ) = cosθ . So
(sin72° + cos 18°)(sin 72° - cos 18°) = (sin 72°)2 – (cos 18°)2
= [sin(90° - 18°)]2 - (cos 18°)2
= (cos 18°)2 - (cos 18°)2
= cos2 18° - cos2 18° 
So value of (sin 72° + cos 18°) (sin 72° + cos 18°) is 0 .

(ix) sin 35° sin 55°- cos 35° cos 55°

Solution

We find : sin 35° sin 55°- cos 35° cos 55°
Since sin (90° - θ) = cos θ and cos (90°- θ) = sin θ
sin 35° sin 55° - cos 35° cos55° = sin (90°- 55°)sin 55° - cos(90°- 55°) cos 55°
= cos 55° sin 55° - sin 55° cos 55°
= 1 – 1
= 0
So value of sin 35° sin 55° - cos 35° cos 55° is 0.

(x) tan 48° tan 23° tan 42° tan 67°

Solution

We have to find tan 48° tan 23° tan × 42° tan 67°
Since tan (90° - θ) = cot θ . So
tan 48° tan 23° tan 42° tan 67° = tan(90° - 67°) tan 42° tan 67°
= cot 42° cot 67° tan 42° tan 67°
= (tan 67°cot 67°) (tan 42° cot 42°)
= 1×1
= 1
So value of tan 48° tan 23° tan 42° tan 67° is 1 .

(xi) sec 50° sin 40° + cos 40° cosec 50°  

Solution

We find to find sec 50° sin 40° + cos 40° cosec 50° 
Since cos (90°- θ) = sin θ, sec(90°- θ) = cosec θ and sin θ cosec θ = 1. So
sec 50° sin 40° + cos 40° cosec 50° = sec(90° - 40°) sin 40° + cos(90° - 50°) cosec 50°
= cosec 40° sin 40° + sin 50° cosec 50°
= 1 + 1
= 2
So value of sec 50° sin 40° + cos 40° cosec 50° is 2.

3. Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

(i) Sin 59° + cos 56°

Solution

sin 59° = sin(90°-31°) = cos 31°
cos 56° = cos (90° -34°) = sin 34°
⇒ cos 31° + sin 34°

(ii) Tan 65° + cot 49°  

Solution

tan 65° = tan (90°-25°) cot 25°
cot 49° = cot(90°-41°) tan 41°
⇒ cot 25° + tan 41°

(iii) Sec 76° + cosec 52°

Solution

sec 76° = sec(90°-14°) = cosec 14°
cosec 52° = cosec(90°-88°) =  sec 38°
⇒ cosec 14° + sec 38°

(iv) Cos 78° + sec 78°

Solution

cos 78° = cos (90°-12°) = sin 12°
sec 78° = sec(90°-12°) = cosec 12°
⇒ sin 12° + cosec 12°

(v)  Cosec 54° + sin 72°

Solution

cosec 54° = cosec (90°-36°) = sec 36°
sin 72° = sin (90°-18°) cos 18°
⇒ sec 36° + cos 18°

(vi) Cot 85° + cos 75° 

Solution

cot 85° = cot (90°-5°) = tan 5°
cos 75° = cos (90°-15°) = sin 15°
tan 5° + sin 15°

(vii) Sin 67° + cos 75°

Solution

sin 67° = sin (90°-23°) = cos 23°
cos 75° = cos(90° - 15°) = sin 15°
= cos 23° + sin 15°

4. Express Cos 75° + cot 75° in terms of angles between 0° and 30°.

Solution

cot 75° = cos (90°-15°) = sin 15°
cot 75° = cot (90° 15°) = tan 15°
= sin 15° + tan 15°

5. If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A = ?

Solution


6. If A, B, C are interior angles of a triangle ABC, prove that

(i) tan [c+A/2] = cot B/2

Solution


(ii) sin [B+C/2] = cos A/2

Solution


7. Prove that

(i) tan 20° tan 35° tan 45° tan 55° Tan 70° = 1

Solution


(ii) sin 48° sec 42° + cosec 42° = 2

Solution


(iii) sin 70°/ cos 20° +  cosec 20°/ sec 70° - 2 cos 70° cosec 20° = 0 

Solution



(iv) cos 80°/sin 10° + cos 59° cosec 31° = 2 

Solution


8. Prove the following .

(i) sin θ sin (90 - θ) - cos θ cos (90 - θ) = 0  

Solution


(ii) cos (90°-θ) sec (90°-θ) tan θ/cosec (90°-θ)sin(90°-θ)cot(90°-θ) + tan(90°-θ)/cot θ = 2  

Solution


(iii) (tan(90-A)cot A /cosecA) - cosA = 0 

Solution


(iv) cos(90°-A) sin(90°-A)/tan(90°-A) - sinA = 0 

Solution  


(v) sin(50°+ θ) - cos(40° - θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Sol.

Solution


9. Evaluate : 
(i) 2/3 (cos430°-sin445°)-3(sin60°-sec245°)+1/4cot230° 

Solution


(ii) 4 (sin430° + cos460°) - 2/3(sin260° - cos245°) + 1/2 tan2 60° 

Solution


(iii) (sin 50°/cos40° + cosec 40°/sec 50°) - 4 cos 50° cosec 40°   

Solution


(iv) ) Tan 35° tan 40° tan 50° tan 55°

Solution


(v) Cosec (65°  + θ) – sec (25°  – θ) – tan (55°  – θ) + cot (35° + θ)    

Solution


(vi) tan 7° tan 23° tan 60° tan 67° tan 83° .

Solution


(vii) (2 sin 68°/ cos 22° ) - (2 cot 15°/5 tan 75°) - 3 tan 45° tan 20° tan 40° tan 50° tan 70°/ 5 .

Solution


(viii) 3 cos 55° / 7 sin 35° - 4(cos 70° cosec 20°) /7 (tan 5° tan 25° tan 45° tan 65° tan 85°) 

Solution



(ix) sin 18°/cos 72° + √3 { tan 10° tan 30°  tan 40° tan 50°  tan 80°}

Solution


(x) (cos 58°/sin 32°) + (sin 22°/cos 68°)- cos38°cosec52°/tan18°tan35°tan60°tan72°tan65°

Solution


10. If Sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ.

Solution


11. If A, B, C are the interior angles of a ∆ABC,  show that: 
(i) sin(B+C/2) = cos A/2
(ii) cos [B+C/2] = sin A/2

Solution


12. If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°) 

Solution


13. If θ is a positive acute angle such that sec θ = cosec 60°, find 2 cos2 θ – 1 . 

Solution



14. If cos 2θ = sin 4 θ where 2θ , 4θ  are acute angles, find the value of θ 

Solution


15. If Sin 3θ  = cos (θ  – 6°) where 3 θ  and θ − 6° are acute angles, find the value of θ . 

Solution


16. If Sec 4A = cosec (A – 20°) where 4A is acute angle, find the value of A. 

Solution


17. If Sec 2A = cosec (A – 42°) where 2A is acute angle. Find the value of A .

Solution

GET OUR ANDROID APP

Get Offline Ncert Books, Ebooks and Videos Ask your doubts from our experts Get Ebooks for every chapter Play quiz while you study

Download our app for FREE

Study Rankers Android App Learn more

Study Rankers App Promo