R.D. Sharma Solutions Class 10th: Ch 5 Trigonometric Ratios Exercise 5.2

Chapter 5 Trigonometric Ratios R.D. Sharma Solutions for Class 10th Math Exercise 5.2

Exercise 5.2

Evaluate each of the following (1 – 19):

1. sin45°sin30° + cos45°cos30° 

Solution


2. Sin 60° cos 30° + cos 60° sin 30° 

Solution



3. Cos 60° cos 45° - sin 60° ∙ sin 45°

Solution


4. Sin2 30° + sin2 45° + sin2 60° + sin2 60° + sin2 90°   

Solution 

 
5. cos2 30° + cos2 45° + cos2 60° + cos2 90°   

Solution


6. tan2 30° + tan2 60° + tan2 45°

Solution


7. 2 sin2 30° - 3 cos2 45° + tan2 60°  

Solution 


8. sin2 30° cos2 45° + 4tan2 30° + 1/2 sin2 90° - 2 cos2 90° + 1/24 cos2 0° .

Solution


9. 4(sin4 60° + cos4 30°) + 3(tan2 60° - tan2 45°) + 5 cos2 45°  

Solution


10. (cosec2 45° sec2 30°)(sin2 30° + 4 cot2 45° - sec60°) 

Solution


11. cosec3 30° cos 60° tan3 45° + sin2 90° sec2 45° cot 30°   

Solution


12. cot2 30° - 2cos2 60° - 3/4 sec2 45° - 4 sec2 30°     

Solution


13. ( cos 0° + sin 45° + sin 30°)(sin 90° - cos 45° + cos 60°)  

Solution


14. sin 30° - sin 90° + 2 cos 0°/tan 30° tan 60° 

Solution

 

15. 4/cot2 30° + 1/ sin2 60° - cos2 45° 

Solution


16. 4(sin4 30° + cos2 60°) - 3(cos2 45° - sin2 90°) - sin2 60°  

Solution


17.  tan2 60° + 4 cos2 45° + 3 sec2 30° + 5 cos2 90°/cosec 30° + sec 60° - cot2 30° 

Solution


18. sin 30°/sin 45° + tan 45°/sec 60° - sin 60°/cot 45° - cos 30° sin 90° 

Solution 


19. tan 45°/sec 60° - sin 60°/cot 45° - 5 sin 90°/ 2 cos 0°

Solution


20. 2sin 3x = √3/2 = ? 

Solution

sin 3x = √3/2
sin 3x = sin60°
Equating angles we get,
3x = 60°
x = 20°

21. 2 sin x/2 = 1 x = ? 

Solution 

sin x/2 = 1/2
sin x/2 = sin 30°
x/2 = 30°
x = 60°

22. √3 sin x = cos x

Solution 

√3 tan x = 1
tan x = 1/√3
∴ tan x = tan 30°
x = 30°

23. tan x = sin 45° cos 45° + sin 30°

Solution


24. √3 tan 2x = cos 60° + sin 45° cos 45°

Solution


25.Cos 2x = cos 60° cos 30° + sin 60° sin 30° .

Solution


26. If θ = 30° verify 
(i) Tan 2 θ = 2 tan θ/1-tan2 θ 
(ii) Sin θ = 2 tan θ/1-tan2 θ
(iii) Cos 2 θ = 1-tan2θ/1+tan2θ 
(iv) Cos 3 θ = 4 cos3 θ - 3 cos θ 

Solution

(i)
 

(ii) 

(iii) 

(iv) 


27. If A = B = 60° verify 
(i) cos (A-B) = Cos A cos B + sin A sin B
(ii) sin (A-B) = sin A cos B - cos A sin B 
(iii) tan (A-B) = tan A - tan B/1 + tan A tan B 

Solution 

(i)

(ii)

(iii) 

28. If A = 30° B = 60° verify 
(i) Sin(A+B) = Sin A Cos B + cos A sin B
(ii) Cos(A+B) = cos A cos B - sin A sin B  

Solution

(i)

(ii)

29. If sin (A+B) = 1 and cos (A-B) = 1,0°< A+B ≤ 90°, find A and B.   

Solution

Given :
Sin(A+B) = 1…(1)
Cos(A-B) = 1…(2)
We know that ,
Sin 90° = 1…(3)
Cos 0° = 1 …(4)
Now by comparing equation (1) and (3)
We get,
A+B = 90 …(5)
Now by comparing equation (2) and (4)
We get,
A-B=0 …(6)
Now we get the values of A and B, let us solve equation (5) and (6) simultaneously
Therefore by adding equation (5) and (6)
We get ,
A+B = 90
+A-B = 0
2A + 0 = 90
Therefore,
2A = 90
⇒ A = 90/2
⇒ A = 45°
Hence A = 45°
Now by subtracting equation (6) from equation (5)
We get,
A+B = 90
-A-B = 0
(-)(+)(-)
0+2B = 90
Therefore,
2B = 90
⇒ B = 90/2
⇒ B = 45°
Hence B = 45°
Therefore the values of A and B are as follows
A = 45° and B = 45°

30. If tan (A-B) 1/√3 and tan (A+B) = √3, 0° < A+B ≤ 90°, A≥B, Find A&B.

Solution 


31. If sin (A-B) = 1/2 and cos (A+B) = 1/2 , 0°< A + B ≤ 90°, A < B find A and B .

Solution

Given :
Sin(A-B) = 1/2 …(1)
Cos(A+B) = 1/2 …(2)
We know that ,
sin 30° = 1/2 …(3)
cos 60° = 1/2 …(4)
Now by comparing equation (1) and (3)
We get,
A-B = 30 …(5)
Now by comparing equation (2) and (4)
We get,
A+B = 60 …(6)
Now to get the values of A and B, let us solve equation (5) and (6) simultaneously
Therefore by adding equation (5) and (6)
We get,
A-B = 30
+ A+B = 60
2A + 0 = 90
Therefore,
2A = 90
⇒ A = 90/2
⇒ A = 45°
Hence A = 45°
Now by subtracting equation (5) from equation (6)
We get,
A+B = 60
-A-B = 30
(-)(+)(-)
0 + 2B = 30
Therefore ,
2B = 30
⇒ B = 30/2
⇒ B = 15°
Hence B = 15°
Therefore the values of A and B are as follows
A = 45° and B = 15°

32. In a △ABC right angled at B, ∠A = ∠C. Find the values of
(i) sin A cos C + cos A sin C
(ii) sin A sin B + cos A cos B


Solution


33. Find the acute angles A&B, if sin (A+2B) = √3/2 cos(A+4B) = 0, A>B.

Solution


34. In ∆PQR, right angled at Q, PQ = 3cm PR = 6cm. Determine ∠P = ? ∠R = ?

Solution



35. If sin (A-B) = sin A - cos A sin B and cos (A-B) = cos A cos B + sin A sin B , find the values of sin 15° and cos 15° .

Solution


36. In a right triangle ABC, right angled at C , if ∠B = 60° and AB = 15 units . Find the remaining angles and sides .

Solution


37 . If △ABC is a right triangle such that ∠C = 90° ∠A = 45°, BC = 7 units find ∠B , AB and AC .

Solution


38. In rectangle ABCD AB = 20 cm ∠BAC = 60° BC, calculate side BC and diagonals AC and BD. 

Solution


39. If A and B are acute angles such that tan A = 1/2 , tan B = 1/3 and tan (A+B) = tan A + tan B/1-tan A tan B , find A + B .

Solution


40. Prove that (√3+1) (3-cot 30°) = tan3 60° - 2 sin 60°.

Solution

GET OUR ANDROID APP

Get Offline Ncert Books, Ebooks and Videos Ask your doubts from our experts Get Ebooks for every chapter Play quiz while you study

Download our app for FREE

Study Rankers Android App Learn more

Study Rankers App Promo