NCERT Solutions for Class 12th: Ch 1 Relations and Functions Exercise 1.3

 NCERT Solutions for Class 12th: Ch 1 Relations and Functions Exercise 1.3 Math

Page No: 18

Exercise 1.3

1. Let f : {1, 3, 4} → {1, 2, 5} and g : {1, 2, 5} → {1, 3} be given by f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2, 3), (5, 1)}. Write down gof

Answer

The functions f: {1, 3, 4} → {1, 2, 5} and g: {1, 2, 5} → {1, 3} are defined as f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2, 3), (5, 1)}.
gof(1) = g[f(1)] = g(2) = 3    [as f(1) = 2 and g(2) = 3]
gof(3) = g[f(3)] = g(5) = 1    [as f(3) = 5 and g(5) = 1]
gof(4) = g[f(4)] = g(1) = 3    [as f(4) = 1 and g(1) = 3]
∴ gof = {(1, 3), (3, 1), (4, 3)}

2. Let f, g and h be functions from R to R. Show that
(f + g) oh = foh + goh 
(f . g) oh = (foh) . (goh)

Answer

To prove: (f + g)oh = foh + goh
LHS = [(f + g)oh](x)
= (f + g)[h(x)]
= f [h(x)] + g[h(x)]
= (foh)(x) + (goh)(x)
= {(foh)(x) + (goh)}(x) = RHS
∴ {(f + g)oh}(x) = {(foh)(x) + (goh)}(x) for all x ∈R
Hence, (f + g)oh = foh + goh

To Prove: (f.g)oh = (foh).(goh)
LHS = [(f.g)oh](x)
= (f.g)[h(x)]
= f[h(x)] . g[h(x)]
= (foh)(x) . (goh)(x)
= {(foh).(goh)}(x) = RHS
∴ [(f.g)oh](x) = {(foh).(goh)}(x)    for all x ∈R
Hence, (f.g)oh = (foh).(goh)

3. Find gof and fog, if
(i) f(x) = | x | and g(x) = | 5x – 2 |
(ii) f(x) = 8x3 and g(x) = x1/3.

Answer

(i). f(x) = |x| and g(x) = |5x-2|
∴gof(x) = g(f(x)) = g(|x|) = |5|x|-2|
fog(x) = f(g(x)) = f(|5x-2|) = ||5x-2|| = |5x-2|

(ii). f(x) = 8x3 and g(x) = x1/3
∴gof(x) = g(f(x)) = g(8x3) = (8x3)1/3 = 2x
fog(x) = f(g(x)) = f(x1/3) = 8(x1/3)3 = 8x

4. If f(x) = (4x+3)/(6x-4), x ≠ 2/3, show that fof(x) = x, for all x ≠ 2/3. What is the inverse of f ?

Answer

Hence, the given function f is invertible and the inverse of f is f itself.

5. State with reason whether following functions have inverse
(i) f : {1, 2, 3, 4} → {10} with
f = {(1, 10), (2, 10), (3, 10), (4, 10)}

(ii) g : {5, 6, 7, 8} → {1, 2, 3, 4} with
g = {(5, 4), (6, 3), (7, 4), (8, 2)}

(iii) h : {2, 3, 4, 5} → {7, 9, 11, 13} with
h = {(2, 7), (3, 9), (4, 11), (5, 13)}

Answer

(i) f: {1, 2, 3, 4} → {10} defined as f = {(1, 10), (2, 10), (3, 10), (4, 10)}
From the given definition of f, we can see that f is a many one function as f(1) = f(2) = f(3) = f(4) = 10
∴f is not one – one.
Hence, function f does not have an inverse.

(ii) g: {5, 6, 7, 8} → {1, 2, 3, 4} defined as g = {(5, 4), (6, 3), (7, 4), (8, 2)}
From the given definition of g, it is seen that g is a many one function as g(5) = g(7) = 4.
∴ g is not one – one.
Hence, function g does not have an inverse.

(iii) h: {2, 3, 4, 5} → {7, 9, 11, 13} defined as h = {(2, 7), (3, 9), (4, 11), (5, 13)}
It is seen that all distinct elements of the set {2, 3, 4, 5} have distinct images under h.
∴ Function h is one – one.
Also, h is onto since for every element y of the set {7, 9, 11, 13}, there exists an element x in the set {2, 3, 4, 5}, such that h(x) = y.
Thus, h is a one – one and onto function.
Hence, h has an inverse.

6. Show that f : [–1, 1] → R, given by f (x) =  x/(x+2)  is one-one. Find the inverse of the function f : [–1, 1] → Range f.
[Hint: For y ∈ Range f, y = f(x) =  x/(x+2), for some x in [–1, 1], i.e., x = 2y/(2y-1)]

Answer

f : [–1, 1] → R, given by f (x) =  x/(x+2)
For one-one,
Now,

7. Consider f : R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.

Answer

f: R → R is given by, f(x) = 4x + 3
For one – one
Let f(x) = f(y)
⇒ 4x + 3 = 4y + 3
⇒ 4x = 4y
⇒ x = y
∴ f is a one – one function.

For onto
For y ∈ R, let y = 4x + 3.
⇒ x = y-3/4 ∈ R
Therefore, for any y ∈ R, there exists x = y-3/4 ∈ R, such that

8. 8. Consider f : R+ → [4, ∞) given by f(x) = x2 + 4. Show that f is invertible with the inverse f-1 of f given by f-1(y) = √(y-4) , where R+ is the set of all non-negative real numbers.

Answer

f: R+ → [4, ∞) is given as f(x) = x2 + 4.

For one – one
Let f(x) = f(y)
⇒ x2 + 4 = y2 + 4
⇒ x2 = y2
⇒ x = y [as x = y ∈ R+]
∴ f is a one–one function.

For onto

Page No. 19

9. Consider f : R+ → [– 5, ∞) given by f (x) = 9x2 + 6x - 5. Show that f is invertible with 
Answer

f: R+ → [−5, ∞) is given as f(x) = 9x2 + 6x − 5.
Let y be an arbitrary element of [−5, ∞).
Let y = 9x2 + 6x – 5
⇒ y = (3x+1)2 -1 - 5 = (3x+1)2 -6
⇒ y + 6 = (3x + 1)2
⇒ 3x + 1 = √(y + 6)

10. Let f : X → Y be an invertible function. Show that f has unique inverse.
(Hint: suppose g1 and g2 are two inverses of f. Then for all y ∈ Y, fog1(y) = IY(y) = fog2 (y). Use one-one ness of f).

Answer

Let f: X → Y be an invertible function.
Also, suppose f has two inverses (say g1 and g2)
Then, for all y∈Y, we have
fog1(y) = IY(y) = fog2(y)
⇒ f(g1(y)) = f(g2(y))
⇒ g1(y) = g2(y) [as f is invertible ⇒ f is one–one]
⇒ g1 = g2 [as g is one–one]
Hence, f has a unique inverse.

11. Consider f:{1, 2, 3} → {a, b, c} given by f(1) = a,f(2) = b and f(3) = c. Find f-1 and show that (f-1)-1 = f.

Answer

Function f: {1, 2, 3} → {a, b, c} is given by f(1) = a, f(2) = b, and f(3) = c
If we define g: {a, b, c} → {1, 2, 3} as g(a) = 1, g(b) = 2, g(c) = 3.

We have,
(fog)(a) = f(g(a)) = f(1) = a
(fog)(b) = f(g(b)) = f(2) = b
(fog)(c) = f(g(c)) = f(3) = c

and

(gof)(1) = g(f(1)) = f(a) = 1
(gof)(2) = g(f(2)) = f(b) = 2
(gof)(3) = g(f(3)) = f(c) = 3

∴ gof = IX and fog =  IY, where X = {1, 2, 3} and Y= {a, b, c}.
Thus, the inverse of f exists and f-1 = g.
∴ f-1:{a, b, c} → {1, 2, 3} is given by f-1(a) = 1, f-1(b) = 2, f-1(c) = 3

Let us now find the inverse of f-1 i.e., find the inverse of g.
If we define h: {1, 2, 3} → {a, b, c} as h(1) = a, h(2) = b, h(3) = c
We have

(goh)(1) = g(h(1)) = g(a) = 1
(goh)(2) = g(h(2)) = g(b) = 2
(goh)(3) = g(h(3)) = g(c) = 3

and

(hog)(a) = h(g(a)) = h(1) = a
(hog)(b) = h(g(b)) = h(2) = b
(hog)(c) = h(g(c)) = h(3) = c
∴ goh = IX and hog = IY, where X = {1, 2, 3} and Y = {a, b, c}.
Thus, the inverse of g exists and g-1 = h ⇒ (f-1)-1 = h.
It can be noted that h = f.
Hence, (f-1)-1 = f.

12. Let f: X → Y be an invertible function. Show that the inverse of f-1 is f, i.e., (f-1)-1 = f

Answer

Let f: X → Y be an invertible function.
Then, there exists a function g: Y → X such that gof = IX and fog = IY.
Here, f-1 = g.
Now, gof = IX and fog = IY
⇒ f-1of = IX and fof-1 = IY
Hence, f-1: Y → X is invertible and f is the inverse of f-1
i.e., (f-1)-1 = f.

13. 13. If f: R → R be given by f(x) = ((3 - x3))1/3, then fof(x) is
(a) x)1/3
(b) x3
(c) x
(d) (3 - x3)

Answer

The correct option is C.


GET OUR ANDROID APP

Get Offline Ncert Books, Ebooks and Videos Ask your doubts from our experts Get Ebooks for every chapter Play quiz while you study

Download our app for FREE

Study Rankers Android App Learn more

Study Rankers App Promo